t=-16t^2+128t+3500

Simple and best practice solution for t=-16t^2+128t+3500 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t=-16t^2+128t+3500 equation:



t=-16t^2+128t+3500
We move all terms to the left:
t-(-16t^2+128t+3500)=0
We get rid of parentheses
16t^2-128t+t-3500=0
We add all the numbers together, and all the variables
16t^2-127t-3500=0
a = 16; b = -127; c = -3500;
Δ = b2-4ac
Δ = -1272-4·16·(-3500)
Δ = 240129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240129}=\sqrt{9*26681}=\sqrt{9}*\sqrt{26681}=3\sqrt{26681}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-127)-3\sqrt{26681}}{2*16}=\frac{127-3\sqrt{26681}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-127)+3\sqrt{26681}}{2*16}=\frac{127+3\sqrt{26681}}{32} $

See similar equations:

| 0.2x^2-10x+400=0 | | 13=x−3 | | 0.2x^2+10x-400=0 | | −4x5(11x3+2x2+9x+1)=0 | | f(9)=-9^2-4(9)-19 | | F(x)=5x3+3x2+6x+5 | | |9x-2|=|8x-5| | | 24x-7=20x+5 | | 3x+(-2)-8=0 | | 209m=7 | | 11m+2(3m-1)=15m+4 | | (x-8)(3x-8)=112 | | 13=2/3c | | w^2+6w-775=0 | | 0=48x+8x2 | | w^2+6w-187=0 | | v^2+2v-33=0 | | 0=48x | | 19x-4+18x+2=180 | | x+x+1=169 | | -(5a+6)=2(3a | | -4=(3-5x)-4x | | 2/3x+3/4x=51 | | -2(1y-4)=20-2y-12 | | 6(x-2)=36x10x | | 4-4z-1=2 | | -6(u-4)=9u-21 | | x+x+x=169 | | 21(g+3)=2(g+4) | | d=261.9=-48 | | 6u=u+35 | | (-2x+3)=4 |

Equations solver categories